试题

题目:
若x=
3
-1
3
+1
,y=
3
+1
3
-1
,求
x2+y2+2
的值.
答案
解:因为x=
3
-1
3
+1
,y=
3
+1
3
-1

所以x+y=
3
-1
3
+1
+
3
+1
3
-1

=
(
3
-1)
2
+(
3
+1)
2
(
3
+1)(
3
-1)

=
4-2
3
+4+2
3
(
3
)
2
-1

=4.
x·y=
3
-1
3
+1
·
3
+1
3
-1
=1
所以,
x2+y2+2

=
(x+y)2-2xy+2

=
42-2×1+2

=4.
解:因为x=
3
-1
3
+1
,y=
3
+1
3
-1

所以x+y=
3
-1
3
+1
+
3
+1
3
-1

=
(
3
-1)
2
+(
3
+1)
2
(
3
+1)(
3
-1)

=
4-2
3
+4+2
3
(
3
)
2
-1

=4.
x·y=
3
-1
3
+1
·
3
+1
3
-1
=1
所以,
x2+y2+2

=
(x+y)2-2xy+2

=
42-2×1+2

=4.
考点梳理
二次根式的化简求值.
观察发现:先化简x,y的值,再计算x,y的和与积.
此题主要注意化简x,y的值,再求xy,x+y的值,然后整体代入.
找相似题