试题

题目:
先化简,再求值:
1
a+1
+
1
a(a+1)
+
a2-a
a2-2a+1
,其中a=
2
3
+1

答案
解:∵a=
2
3
+1
=
3
-1,
∴a-1=
3
-1-1<0,
1
a+1
+
1
a(a+1)
+
a2-a
a2-2a+1

=
1
a+1
+
1
a(a+1)
+
a(a-1)
(a-1)2

=
1
a+1
+
1
a(a+1)
-
a(a-1)
a-1

=
a
a(a+1)
+
1
a(a+1)
-a,
=
a+1
a(a+1)
-a,
=
1
a
-a,
=
1-a2
a

=
1
a
-a,
当a=
3
-1时,原式=
3
+1
2
-
3
+1=
3-
3
2

解:∵a=
2
3
+1
=
3
-1,
∴a-1=
3
-1-1<0,
1
a+1
+
1
a(a+1)
+
a2-a
a2-2a+1

=
1
a+1
+
1
a(a+1)
+
a(a-1)
(a-1)2

=
1
a+1
+
1
a(a+1)
-
a(a-1)
a-1

=
a
a(a+1)
+
1
a(a+1)
-a,
=
a+1
a(a+1)
-a,
=
1
a
-a,
=
1-a2
a

=
1
a
-a,
当a=
3
-1时,原式=
3
+1
2
-
3
+1=
3-
3
2
考点梳理
二次根式的化简求值.
首先化简二次根式得出a-1<0,进而利用分式的加减运算得出即可.
此题主要考查了分式的加减运算以及二次根式的化简,得出a-1的符号是解题关键.
找相似题