试题

题目:
(2002·内江)已知:
x
=
a
+
1
a
(0<a<1),求代数式
x2+x-6
x
÷
x+3
x2-2x
-
x-2+
x2-4x
x-2-
x2-4x
的值.
答案
解:∵
x
=
a
+
1
a

∴x=a+
1
a
+2,
x-2=a+
1
a
,(x-2)2=(a+
1
a
2
即:x2-4x=a2+
1
a2
-2=(a-
1
a
2
∴原式=
(x+3)(x-2)
x
·
x(x-2)
x+3
·
x-2+
x2-4x
x-2-
x2-4x
=(x-2)2-
a+
1
a
+
(a-
1
a
)
2
a+
1
a
-
(a-
1
a
)
2
=(a+
1
a
2-
a+
1
a
+
(a-
1
a
)
2
a+
1
a
-
(a-
1
a
)
2

∵0<a<1,∴a-
1
a
<0,
∴原式=a2+
1
a2
+2-
a+
1
a
-a+
1
a
a+
1
a
+a-
1
a

=a2+
1
a2
+2-
1
a2

=a2+2.
解:∵
x
=
a
+
1
a

∴x=a+
1
a
+2,
x-2=a+
1
a
,(x-2)2=(a+
1
a
2
即:x2-4x=a2+
1
a2
-2=(a-
1
a
2
∴原式=
(x+3)(x-2)
x
·
x(x-2)
x+3
·
x-2+
x2-4x
x-2-
x2-4x
=(x-2)2-
a+
1
a
+
(a-
1
a
)
2
a+
1
a
-
(a-
1
a
)
2
=(a+
1
a
2-
a+
1
a
+
(a-
1
a
)
2
a+
1
a
-
(a-
1
a
)
2

∵0<a<1,∴a-
1
a
<0,
∴原式=a2+
1
a2
+2-
a+
1
a
-a+
1
a
a+
1
a
+a-
1
a

=a2+
1
a2
+2-
1
a2

=a2+2.
考点梳理
二次根式的化简求值.
由已知条件可得:∵
x
=
a
+
1
a
,∴x=a+
1
a
+2,x-2=a+
1
a
,(x-2)2=(a+
1
a
2即:x2-4x=a2+
1
a2
-2=(a-
1
a
2,化简原式,并代入求值,由a的取值范围确定式子的值.
此题用了整体代入得数学思想,难度较大.
找相似题