试题

题目:
(2010·湘潭)先化简,再求值:
x
y(x+y)
-
y
x(x+y)
,其中x=
2
+1,y=
2
-1

答案
解:原式=
x2
xy(x+y)
-
y2
xy(x+y)

=
x2-y2
xy(x+y)

=
(x-y)(x+y)
xy(x+y)

=
x-y
xy

x=
2
+1,y=
2
-1
时,
x-y
xy
=
(
2
+1)-(
2
-1)
(
2
+1)(
2
-1)
=
2
1
=2

解:原式=
x2
xy(x+y)
-
y2
xy(x+y)

=
x2-y2
xy(x+y)

=
(x-y)(x+y)
xy(x+y)

=
x-y
xy

x=
2
+1,y=
2
-1
时,
x-y
xy
=
(
2
+1)-(
2
-1)
(
2
+1)(
2
-1)
=
2
1
=2
考点梳理
二次根式的化简求值;分式的化简求值.
此题要对代数式先通分,最简公分母是xy(x+y),再相减,能够熟练运用因式分解的方法进行约分.
代值的时候,熟练合并同类二次根式.
此题综合考查了二次根式的混合运算和二次根式的加减运算.
找相似题