试题
题目:
如图,已知AB∥DE,AB=DE,请你添加一个条件
∠A=∠D
∠A=∠D
,可以根据“ASA”得△ABC≌△DEF;或者添加条件BE=CF,可以根据
SAS
SAS
得到△ABC≌△DEF.
答案
∠A=∠D
SAS
解:①添加∠A=∠D,
∵AB∥DE,
∴∠B=∠DEF,
在△ABC和△DEF中,
∠A=∠D
AB=DE
∠B=∠DEF
,
∴△ABC≌△DEF(ASA);
故答案为:∠A=∠D;
②∵AB∥DE,
∴∠B=∠DEF
∵BE=CF,
∴BE+EC=CF+EC,
即BC=EF,
在△ABC和△DEF中,
AB=DE
∠B=∠DEF
CB=EF
,
∴△ABC≌△DEF(SAS).
故答案为:SAS.
考点梳理
考点
分析
点评
全等三角形的判定.
①添加∠A=∠D,首先根据AB∥DE可得∠B=∠DEF,然后根据ASA证明△ABC≌△DEF;
②由BE=CF可得BC=EF,再利用SAS可证明△ABC≌△DEF.
此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题
如图,AD⊥BC,D为BC的中点,则△ABD≌△
ACD
ACD
.
如图,∠C=∠D,再添加条件
∠ABD=∠BAC
∠ABD=∠BAC
或条件
∠ABC=∠BAD
∠ABC=∠BAD
,就可以用AAS定理判定△ABD≌△BAC.
如图,已知AO=OB,OC=OD,AD和BC相交于点E,则图中全等三角形有
4
4
对.
如图,点E,C在BF上,AB=DE,∠ABC=∠DEF,请你补充一个条件
BC=EF
BC=EF
,或
BE=CF
BE=CF
,或
∠A=∠D
∠A=∠D
,或
∠ACB=∠F(只选一个即可)
∠ACB=∠F(只选一个即可)
,使△ABC≌△DEF.
如图,已知∠A=∠D,AB=CD,则△
ABO
ABO
≌△
DCO
DCO
,依据是
AAS
AAS
(用简写形式表示).