试题
题目:
如图,Rt△ABC中,∠C=90°,AC=4,BC=3,AB=5,射线AX垂直于AC,点A为垂足,一条长度为5的线段PQ的两个端点P、Q分别在边AC和射线AX上运动,则当AP=
4或3
4或3
时,△ABC与△PQA全等.
答案
4或3
解:①当P与C重合时,AC=AP=4时,△BCA≌△QAP,
在Rt△BCA和Rt△QAC中,
PQ=AB=5
AC=AP
,
∴Rt△BCA≌Rt△QAC(HL);
②当AP=BC=3时,△BCA≌△PAQ,
在Rt△BCA和Rt△QAC中,
QP=BA
CB=AP
,
∴Rt△BCA≌Rt△PAQ(HL);
故答案为:4或3.
考点梳理
考点
分析
点评
全等三角形的判定.
此题要分情况讨论:①当P与C重合时,AC=AP=4时,△BCA≌△QAP;②当AP=BC=3时,△BCA≌△PAQ.
本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.
找相似题
如图,AD⊥BC,D为BC的中点,则△ABD≌△
ACD
ACD
.
如图,∠C=∠D,再添加条件
∠ABD=∠BAC
∠ABD=∠BAC
或条件
∠ABC=∠BAD
∠ABC=∠BAD
,就可以用AAS定理判定△ABD≌△BAC.
如图,已知AO=OB,OC=OD,AD和BC相交于点E,则图中全等三角形有
4
4
对.
如图,点E,C在BF上,AB=DE,∠ABC=∠DEF,请你补充一个条件
BC=EF
BC=EF
,或
BE=CF
BE=CF
,或
∠A=∠D
∠A=∠D
,或
∠ACB=∠F(只选一个即可)
∠ACB=∠F(只选一个即可)
,使△ABC≌△DEF.
如图,已知∠A=∠D,AB=CD,则△
ABO
ABO
≌△
DCO
DCO
,依据是
AAS
AAS
(用简写形式表示).