试题
题目:
已知△ABC≌△A′B′C′,A与A′,B与B′是对应点,△A′B′C′周长为9cm,AB=3cm,BC=4cm,则A′C′=
2
2
cm.
答案
2
解:∵△ABC≌△A′B′C′,A与A′,B与B′是对应点,
∴A′C′=AC,
在△ABC中,周长为9cm,AB=3cm,BC=4cm,
∴AC=2cm,即A′C′=2cm.
故填2.
考点梳理
考点
分析
点评
全等三角形的性质.
全等三角形的对应边相等,周长也相等,可据此求出A′C′的长,做题时要根据已知找准对应边.
本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,注意求边长时要在同一个三角形中进行.
找相似题
(2008·资阳)如图,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED,CD分别与Rt△ABC的直角边BC相交于M,N.则当△DMN为等边三角形时,AM的值为( )
如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是( )
若△ABC≌△A′B′C′,且AB=AC=6,△ABC的周长为20cm,则B′C′的长为( )
如图,△ABC≌△EFD,那么下列说法错误的是( )
如图,△ABD≌△CDB,下面结论中不正确的是( )