试题
题目:
某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案,设计方案:先在平地上取一个可直接到达A,B的点E(AB为池塘的两端),连接AE,BE,并分别延长AE至D,BE至C,使ED=AE,EC=BE.测出CD的长作为AB之间的距离.他的方案可行吗?请说明理由.若测得CD为10米,则池塘两端的距离是多少?
答案
解:在△AEB和△DEC中
AE=ED
∠AEB=∠
EB=CE
DEC
∴△AEB≌△DEC(SAS);
∴AB=CD=10米(全等三角形的对应边相等).
答;池塘两端的距离是10米.
解:在△AEB和△DEC中
AE=ED
∠AEB=∠
EB=CE
DEC
∴△AEB≌△DEC(SAS);
∴AB=CD=10米(全等三角形的对应边相等).
答;池塘两端的距离是10米.
考点梳理
考点
分析
点评
全等三角形的应用.
这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.
找相似题
有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,但A、B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案:
(1)画出测量图;
(2)写出测量方案;
(3)写出推理过程.
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与B
C是否相等?说明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意义)
AE=BF()
∴△ADE≌△BCF (
AAS
AAS
)
∴AD=BC (
全等三角形对应边相等
全等三角形对应边相等
)
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
(1)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
③
③
去(填序号);
(2)利用他带去的玻璃,用尺规作图作出该三角形.(保留作图痕迹,不写画法)
(3)在上面画好的三角形上,利用三角板作出最短边上的高.
(1)如图1,将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
(2)如图2,狮子、老虎、狗熊、野猪在正方形方格中,请你把它们分隔成四个全等的房间,在图上画出设计方案.