试题
题目:
王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以( )
A.①
B.②
C.③
D.④
答案
A
解:②块,因为它只是其中不规则的一块,如果仅凭这一块不能配到与原来一样大小的三角形玻璃;
③、④块,它只保留了原来的一个角,那么这样去配也有很大的难度;
①块,因为它不但有两个角还有一个边,这正好符合全等三角形的判定中的ASA.
所以应该带第1块去.
故选A.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.
此题是对全等三角形的判定方法的考查,将其判定方法运用于实际生活中,这要求学生真正掌握常用的判定方法且能够对其灵活运用.
应用题.
找相似题
有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,但A、B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案:
(1)画出测量图;
(2)写出测量方案;
(3)写出推理过程.
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与B
C是否相等?说明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意义)
AE=BF()
∴△ADE≌△BCF (
AAS
AAS
)
∴AD=BC (
全等三角形对应边相等
全等三角形对应边相等
)
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
(1)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
③
③
去(填序号);
(2)利用他带去的玻璃,用尺规作图作出该三角形.(保留作图痕迹,不写画法)
(3)在上面画好的三角形上,利用三角板作出最短边上的高.
(1)如图1,将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
(2)如图2,狮子、老虎、狗熊、野猪在正方形方格中,请你把它们分隔成四个全等的房间,在图上画出设计方案.