试题
题目:
如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、B、C分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD与BE有什么关系?试说明你的结论.
答案
解:AD=BE,AD⊥BE.
理由如下:
∵∠D=90°,
∴∠ABD+∠BAD=90°
又∵∠ABC=90°,
∴∠ABD+∠EBC=90°
∴∠BAD=∠EBC;
又∵AB=BC,∠D=∠E;
∴△ABD≌△BCE(AAS);
∴AD=BE,AD⊥BE.
解:AD=BE,AD⊥BE.
理由如下:
∵∠D=90°,
∴∠ABD+∠BAD=90°
又∵∠ABC=90°,
∴∠ABD+∠EBC=90°
∴∠BAD=∠EBC;
又∵AB=BC,∠D=∠E;
∴△ABD≌△BCE(AAS);
∴AD=BE,AD⊥BE.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
易发现AD与BE所在的△ABD与△BCE在滑动过程中始终全等,因而AD=BE.
本题考查了全等三角形的应用;证明两条线段相等,一般证明它们所在的三角形全等.本题中不论三角板如何滑动,始终有AB=BC,∠ABC=90度,做题时要注意找规律.
应用题.
找相似题
有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,但A、B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案:
(1)画出测量图;
(2)写出测量方案;
(3)写出推理过程.
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与B
C是否相等?说明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意义)
AE=BF()
∴△ADE≌△BCF (
AAS
AAS
)
∴AD=BC (
全等三角形对应边相等
全等三角形对应边相等
)
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
(1)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
③
③
去(填序号);
(2)利用他带去的玻璃,用尺规作图作出该三角形.(保留作图痕迹,不写画法)
(3)在上面画好的三角形上,利用三角板作出最短边上的高.
(1)如图1,将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
(2)如图2,狮子、老虎、狗熊、野猪在正方形方格中,请你把它们分隔成四个全等的房间,在图上画出设计方案.