试题
题目:
如图所示,已知AC=DB,AO=DO,CD=100m,则A,B两点间的距离( )
A.大于100m
B.等于100m
C.小于100m
D.无法确定
答案
B
解:∵AC=DB,AO=DO,
∴OB=OC,
又∠AOB=∠DOC,
∴△AOB≌△DOC,
∴AB=CD=100m.
故选B.
考点梳理
考点
分析
点评
全等三角形的应用.
已知AC=DB,AO=DO,得OB=OC,∠AOB=∠DOC,可以判断△AOB≌△DOC,所以AB=CD=100m.
本题考查了全等三角形判定及性质的应用;题目巧妙地借助两个三角形全等来处理问题,寻找所求线段与已知线段之间的等量关系.本题的关键是证△AOB≌△DOC,然后利用全等的性质解题.
找相似题
有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,但A、B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案:
(1)画出测量图;
(2)写出测量方案;
(3)写出推理过程.
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与B
C是否相等?说明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意义)
AE=BF()
∴△ADE≌△BCF (
AAS
AAS
)
∴AD=BC (
全等三角形对应边相等
全等三角形对应边相等
)
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
(1)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
③
③
去(填序号);
(2)利用他带去的玻璃,用尺规作图作出该三角形.(保留作图痕迹,不写画法)
(3)在上面画好的三角形上,利用三角板作出最短边上的高.
(1)如图1,将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
(2)如图2,狮子、老虎、狗熊、野猪在正方形方格中,请你把它们分隔成四个全等的房间,在图上画出设计方案.