试题
题目:
如图所示,在某市郊的空旷平地上有一个较大的土丘,经分析判断很可能是一座王储陵墓,请你应用所学的知识设计一种方案,能用尺量出不能达到的A、B两点的距离.(只要求说明设计方案和这种方案设计的根据,并画出草图,不
要求数据计算)
答案
解:在地面上找一个能同时看到A、B两点的点O,分别在AO、BO的延长线上取点C、D使CO=AO,DO=BO,只需量出CD的长度即为A、B两点的距离.
根据:△AOB与△COD中,
CO=AO,DO=BO,
又∠AOB=∠COD,
∴△AOB≌△COD,
∴AB=CD,
量出CD的长度即为A、B两点的距离.
解:在地面上找一个能同时看到A、B两点的点O,分别在AO、BO的延长线上取点C、D使CO=AO,DO=BO,只需量出CD的长度即为A、B两点的距离.
根据:△AOB与△COD中,
CO=AO,DO=BO,
又∠AOB=∠COD,
∴△AOB≌△COD,
∴AB=CD,
量出CD的长度即为A、B两点的距离.
考点梳理
考点
分析
点评
专题
全等三角形的应用.
本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有操作性,需要测量的线段和角度在空地一侧可实施,就可以达到目的.
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.还要注意方案的可操作性.
应用题;方案型.
找相似题
有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,但A、B间的距离不能直接测得,请你用已学过的知识按以下要求设计测量方案:
(1)画出测量图;
(2)写出测量方案;
(3)写出推理过程.
如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与B
C是否相等?说明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意义)
AE=BF()
∴△ADE≌△BCF (
AAS
AAS
)
∴AD=BC (
全等三角形对应边相等
全等三角形对应边相等
)
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?
(1)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带
③
③
去(填序号);
(2)利用他带去的玻璃,用尺规作图作出该三角形.(保留作图痕迹,不写画法)
(3)在上面画好的三角形上,利用三角板作出最短边上的高.
(1)如图1,将等边三角形分割成三个全等的图形,请画出三种不同的分割方法.
(2)如图2,狮子、老虎、狗熊、野猪在正方形方格中,请你把它们分隔成四个全等的房间,在图上画出设计方案.