试题
题目:
如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y
1
和过P、A两点的二次函数y
2
的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D,当OD=AD=3时,这两个二次函数的最大值之和等于
5
5
.
答案
5
解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM,
∵OD=AD=3,DE⊥OA,
∴OE=EA=
1
2
OA=2,
由勾股定理得:DE=
O
D
2
-O
E
2
=
5
,
设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴
BF
DE
=
OF
OE
,
CM
DE
=
AM
AE
,
∵AM=PM=
1
2
(OA-OP)=
1
2
(4-2x)=2-x,
即
BF
5
=
x
2
,
CM
5
=
2-x
2
,
解得:BF=
5
2
x,CM=
5
-
5
2
x,
∴BF+CM=
5
.
故答案为:
5
考点梳理
考点
分析
点评
专题
二次函数综合题.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=
5
,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出
BF
DE
=
OF
OE
,
CM
DE
=
AM
AE
,代入求出BF和CM,相加即可求出答案.
此题考查了二次函数的最值,勾股定理,等腰三角形性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
计算题;压轴题.
找相似题
(2011·安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是( )
(2010·遵义)如图,两条抛物线y
1
=-
1
2
x
2
+1,y
2
=
-
1
2
x
2
-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )
(2010·资阳)如图,已知点A
1
,A
2
,…,A
2011
在函数y=x
2
位于第二象限的图象上,点B
1
,B
2
,…,B
2011
在函数y=x
2
位于第一象限的图象上,点C
1
,C
2
,…,C
2011
在y轴的正半轴上,若四边形OA
1
C
1
B
1
、C
1
A
2
C
2
B
2
,…,C
2010
A
2011
C
2011
B
2011
都是正方形,则正方形C
2010
A
2011
C
2011
B
2011
的边长为( )
(2010·鸡西)如图,二次函数y=-x
2
-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足S
△AOP
=3,则点P的坐标是( )
(2004·深圳)抛物线过点A(2,0)、B(6,0)、C(1,
3
),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是( )