试题
题目:
抛物线y=ax
2
与直线x=1,x=2,y=1,y=2组成的正方形有公共点,则a的取值范围是
1
4
≤a≤2
1
4
≤a≤2
.
答案
1
4
≤a≤2
解:如图,
四条直线x=1,x=2,y=1,y=2围成正方形ABCD,
因为抛物线与正方形有公共点,所以可得a>0,而且a值越大,抛物线开口越小,
因此当抛物线分别过A(1,2),C(2,1)时,
a分别取得最大值与最小值,代入计算得出:a=2,a=
1
4
;
由此得出a的取值范围是
1
4
≤a≤2
.
故填
1
4
≤a≤2
.
考点梳理
考点
分析
点评
专题
二次函数综合题;正方形的性质.
建立平面直角坐标系,画出四条直线围成的正方形,进一步判定其开口方向,再代入点的坐标即可解答.
此题利用数形结合的思想,考查了二次函数最值问题以及抛物线开口方向与a值的关系.
计算题.
找相似题
(2011·安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是( )
(2010·遵义)如图,两条抛物线y
1
=-
1
2
x
2
+1,y
2
=
-
1
2
x
2
-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )
(2010·资阳)如图,已知点A
1
,A
2
,…,A
2011
在函数y=x
2
位于第二象限的图象上,点B
1
,B
2
,…,B
2011
在函数y=x
2
位于第一象限的图象上,点C
1
,C
2
,…,C
2011
在y轴的正半轴上,若四边形OA
1
C
1
B
1
、C
1
A
2
C
2
B
2
,…,C
2010
A
2011
C
2011
B
2011
都是正方形,则正方形C
2010
A
2011
C
2011
B
2011
的边长为( )
(2010·鸡西)如图,二次函数y=-x
2
-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足S
△AOP
=3,则点P的坐标是( )
(2004·深圳)抛物线过点A(2,0)、B(6,0)、C(1,
3
),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是( )