试题
题目:
如图,AB与CD交于点O,OE⊥AB,OF⊥CD,若∠EOD=2∠BOD,求∠EOF的度数.
解:∵OE⊥AB,
∴∠EOB=
90°
90°
,
∴∠EOD+
∠BOD
∠BOD
=
90°
90°
,
又∵∠EOD=2∠BOD,
∴∠BOD=
30°
30°
,∠EOD=
60°
60°
,
∵OF⊥CD,
∴∠FOD=
90°
90°
,
∴∠EOF=
90°
90°
-
60°
60°
=
30°
30°
.
答案
90°
∠BOD
90°
30°
60°
90°
90°
60°
30°
解:∵OE⊥AB,
∴∠EOB=90°,
∴∠EOD+∠BOD=90°,
又∵∠EOD=2∠BOD,
∴∠BOD=30°,∠EOD=60°,
∵OF⊥CD,
∴∠FOD=90°,
∴∠EOF=90°-60°=30°.
故答案为:90°,∠BOD,90°,30°,60°,90°,90°,60°,30°.
考点梳理
考点
分析
点评
专题
垂线.
根据OE⊥AB,可得∠EOD+∠BOD=90°,然后根据∠EOD=2∠BOD,求出∠BOD和∠EOD的度数,然后根据OF⊥CD,可求得∠EOF的度数.
本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.
推理填空题.
找相似题
(2010·陕西)如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为( )
如图所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=
150
150
度.
已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是
垂直
垂直
.
如图,直线a、b相交于点O,下列说法:①若∠1=∠2,则a⊥b;②若∠1=∠3,则a⊥b;③若∠1+∠3=180°,则a⊥b;④若∠1+∠2=180°,则a⊥b.其中正确的有
①③
①③
(填序号)
如图,直线AB,CD,EF交于点O,且AB⊥CD,∠1=22°,则∠2=
68°
68°
,∠FOB=
158°
158°
.