试题
题目:
(2013·普洱)如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为
45
45
°.
答案
45
解:∵AB⊥CD,
∴∠ABD=90°,
∵EF平分∠ABD,
∴∠DBE=45°,
∴∠CBF=45°.
故答案为:45.
考点梳理
考点
分析
点评
垂线;角平分线的定义.
根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.
考查了垂线的定义,角平分线的定义,对顶角相等的性质.
找相似题
(2010·陕西)如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为( )
如图所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=
150
150
度.
已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是
垂直
垂直
.
如图,直线a、b相交于点O,下列说法:①若∠1=∠2,则a⊥b;②若∠1=∠3,则a⊥b;③若∠1+∠3=180°,则a⊥b;④若∠1+∠2=180°,则a⊥b.其中正确的有
①③
①③
(填序号)
如图,直线AB,CD,EF交于点O,且AB⊥CD,∠1=22°,则∠2=
68°
68°
,∠FOB=
158°
158°
.