试题
题目:
y=ax
2
+bx+c(a≠0)的图象如图所示,则下面六个代数式:abc;b
2
-4ac;a-b+c;a+b+c;2a-b;9a-4b,值小于0的有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:①由抛物线的开口方向向上可推出a<0;
因为对称轴在y轴左侧,对称轴为x=
-
b
2a
<0,
又因为a<0,b<0;
由抛物线与y轴的交点在y轴的负半轴上,
∴c<0,
故abc<0;
②抛物线与x轴有两个交点,b
2
-4ac>0;
③当x=-1时,a-b+c>0;
④当x=1时,y=a+b+c<0;
⑤对称轴x=-
b
2a
=-1,2a=b,2a-b=0;
⑥∵b=2a,且a<0,
∴9a-4b=9a-8a=a<0,
则①④⑥的值小于0,
故选C.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
根据抛物线的开口方向和对称轴的位置及定顶点的位置,再结合图形可推出a<0,b<0,c<0,由此可判断各式的符号.
此题考查了点与函数的对应关系,难度一般,关键掌握二次项系数a决定抛物线的开口方向和大小,注意数形结合思想的应用.
计算题.
找相似题
(2013·遵义)二次函数y=ax
2
+bx+c(a≠0)的图象如图如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b.则M,N,P中,值小于0的数有( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·烟台)如图是二次函数y=ax
2
+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y
1
),(
5
2
,y
2
)是抛物线上两点,则
y
1
>y
2
.其中说法正确的是( )
(2013·十堰)如图,二次函数y=ax
2
+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0,②b
2
>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0,其中正确结论的个数是( )