试题
题目:
(2013·遵义)二次函数y=ax
2
+bx+c(a≠0)的图象如图如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b.则M,N,P中,值小于0的数有( )
A.3个
B.2个
C.1个
D.0个
答案
A
解:∵图象开口向下,∴a<0,
∵对称轴在y轴左侧,
∴a,b同号,
∴a<0,b<0,
∵图象经过y轴正半轴,
∴c>0,
∴M=a+b-c<0
当x=-2时,y=4a-2b+c<0,
∴N=4a-2b+c<0,
∵-
b
2a
>-1,
∴
b
2a
<1,
∴b>2a,
∴2a-b<0,
∴P=2a-b<0,
则M,N,P中,值小于0的数有M,N,P.
故选:A.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
根据图象得到x=-2时对应的函数值小于0,得到N=4a-2b+c的值小于0,根据对称轴在直线x=-1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b-c的符号.
此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c的符号是解题关键.
计算题;压轴题.
找相似题
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·烟台)如图是二次函数y=ax
2
+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y
1
),(
5
2
,y
2
)是抛物线上两点,则
y
1
>y
2
.其中说法正确的是( )
(2013·十堰)如图,二次函数y=ax
2
+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0,②b
2
>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0,其中正确结论的个数是( )
(2013·黔东南州)二次函数y=ax
2
+bx+c的图象如图所示,则下列结论正确的是( )