试题

题目:
青果学院已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a+c>0;④4a+2b+c与4a-2b+c都是负数,其中结论正确的序号是
②③
②③

答案
②③

解:∵函数的开口向下,
∴a<0,
∵函数与y轴的正半轴相交,
∴c>0,
∵对称轴x=-
b
2a
>0,
∴b>0,
∴abc<0,
故①错误、②正确.
二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点的横坐标异号,因而方程ax2+bx+c=0又两个异号的根,且方程的两个x1,x2,不妨设x1<x2,则-2<x1<-1,且2<x2<3.则-6<
c
a
<-3<-1.
∴a+c>0,故③正确;
当x=-2时,函数的纵坐标小于0,即y=4a-2b+c<0,
当x=2时,函数的纵坐标大于0,则y=4a+2b+c>0,
故④错误.
故正确的是:②③.
故答案是:②③.
考点梳理
二次函数图象与系数的关系.
根据函数的开口方向,对称轴以及与y轴的交点即可确定a,b,c的符号,从而判断①;根据对称轴的位置即可判断②;根据二次函数与x轴的交点的坐标,即可确定
c
a
的范围,确定
c
a
与-1的大小,从而判断a+c的符号;根据x=2和-2时,点的坐标的符号判断④.
主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
压轴题.
找相似题