答案
①③④⑤
解:①正确,由函数图象开口向下可知,a<0,由图象与y轴的交点在y轴的正半轴可知,c>0,由函数的对称轴x=-
=1>0,a<0,可知,b>0,故abc<0;
②错误,因为x=-
=
=1,x=-1,故x=-1时,y=a+b+c=0,即a+c=b;
③正确,由函数图象可知对称轴x=-
=1,所以2a=-b,即4a=-2b,故4a+2b=0,
因为c>0,所以4a+2b+c>0;
④正确,由函数图象的对称轴及与x轴的一个交点为3可知,与x轴的另一个交点为-1,故x
1x
2=
=-3,
∴c=-3a,∵a<0,∴c>-2a;
⑤正确,∵当x=1时,y=a+b+c,
当x=m时,y=am
2+bm+c,
∵当x=1时,y取最大值,
∴a+b+c>am
2+bm+c(m≠1),
∴a+b>am
2+bm(m≠1).
故填①③④⑤.