试题
题目:
(2012·唐山二模)如图,抛物线y=ax
2
+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )
A.a<0
B.b<0
C.c>0
D.b
2
-4ac<0
答案
B
解:A、∵该抛物线的开口方向向上,
∴a>0;故A选项错误;
B、∵函数图象的对称轴为:x=-
b
2a
>0,
∴a,b异号,
∵a>0,
∴b<0,故此选项正确;
C、∵该抛物线与y轴交于负半轴,
∴c<0,故本选项错误;
D、由图象可知,该抛物线与x轴有两个不同的交点,
∴b
2
-4ac>0;故本选项错误.
故选:B.
考点梳理
考点
分析
点评
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求a与b的关系,以及根的判别式的熟练运用.
找相似题
(2013·遵义)二次函数y=ax
2
+bx+c(a≠0)的图象如图如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b.则M,N,P中,值小于0的数有( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·烟台)如图是二次函数y=ax
2
+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y
1
),(
5
2
,y
2
)是抛物线上两点,则
y
1
>y
2
.其中说法正确的是( )
(2013·十堰)如图,二次函数y=ax
2
+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0,②b
2
>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0,其中正确结论的个数是( )