试题
题目:
已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.
答案
解:(1)设y=a(x+1)
2
-4,把点(0,-3)代入得:a=1,
∴函数解析式y=(x+1)
2
-4或y=x
2
+2x-3;
(2)∵x
2
+2x-3=0,
解得x
1
=1,x
2
=-3,
∴A(-3,0),B(1,0),C(0,-3),
∴△ABC的面积=
1
2
×4×3=6
.
解:(1)设y=a(x+1)
2
-4,把点(0,-3)代入得:a=1,
∴函数解析式y=(x+1)
2
-4或y=x
2
+2x-3;
(2)∵x
2
+2x-3=0,
解得x
1
=1,x
2
=-3,
∴A(-3,0),B(1,0),C(0,-3),
∴△ABC的面积=
1
2
×4×3=6
.
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式;抛物线与x轴的交点;三角形的面积.
(1)先设所求函数解析式是y=a(x+1)
2
-4,再把(0,-3)代入,即可求a,进而可得函数解析式;
(2)令函数等于0,解关于x一元二次方程,即可求A、B两点的坐标;
(3)△ABC的面积等于AB×OC的一半.
本题考查了待定系数法求函数解析式、抛物线与x轴的交点、三角形的面积,解题的关键是先求出函数解析式.
计算题.
找相似题
(2005·北京)已知:关于x的方程(a+2)x
2
-2ax+a=0有两个不相等的实数根x
1
和x
2
,并且抛物线y=x
2
-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁.
(1)求实数a的取值范围;
(2)当|x
1
|+|x
2
|=
2
2
时,求a的值.
(2004·宿迁)已知抛物线y=-x
2
+mx-m+2.
(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=
5
,试求m的值;
(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.
(2004·济南)已知抛物线y=-
1
2
x
2
+(6-
m
2
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.
若不论自变量x取何实数时,二次函数y=2x
2
-2kx+m的函数值总是正数,且关于x的实一元二次方程x
2
-4x+k=0有两个不相等的数根.当k为符合条件的最大整数时,m的取值范围为
m>
9
2
m>
9
2
.
二次函数y=ax
2
+bx+c的图象如图所示,给出下列说法:
①abc<0;②方程ax
2
+bx+c=0的根为x
1
=-1、x
2
=3;③当x>1时,y随x值的增大而减小;④当y>0时,-1<x<3.其中正确的说法是
D
D
.
A.①;B.①②;C.①②③;D.①②③④