试题
题目:
已知二次函数y=ax
2
+bx-3的图象经过点A(2,-3),B(1,-4).
(1)求这个函数的解析式;
(2)求这个函数图象与x轴、y轴的交点坐标.
答案
解:(1)由题意,将A与B代入代入二次函数解析式得:
4a+2b-3=-3
a+b-3=-4
,
解得:
a=1
b=-2
,
则二次函数解析式为y=x
2
-2x-3;
(2)令y=0,则x
2
-2x-3=0,即(x+1)(x-3)=0,
解得:x
1
=-1,x
2
=3,
∴与x轴交点坐标为(-1,0),(3,0);
令x=0,则y=-3,
∴与y轴交点坐标为(0,-3).
解:(1)由题意,将A与B代入代入二次函数解析式得:
4a+2b-3=-3
a+b-3=-4
,
解得:
a=1
b=-2
,
则二次函数解析式为y=x
2
-2x-3;
(2)令y=0,则x
2
-2x-3=0,即(x+1)(x-3)=0,
解得:x
1
=-1,x
2
=3,
∴与x轴交点坐标为(-1,0),(3,0);
令x=0,则y=-3,
∴与y轴交点坐标为(0,-3).
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式;抛物线与x轴的交点.
(1)将A与B的坐标代入二次函数解析式中得到关于a与b的方程组,求出方程组的解得到a与b的值,即可确定出二次函数解析式;
(2)对于二次函数,令x=0及y=0即可求出与坐标轴的交点坐标.
此题考查了待定系数法确定二次函数解析式,以及抛物线与x轴的交点,熟练掌握待定系数法是解本题的关键.
计算题.
找相似题
(2005·北京)已知:关于x的方程(a+2)x
2
-2ax+a=0有两个不相等的实数根x
1
和x
2
,并且抛物线y=x
2
-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁.
(1)求实数a的取值范围;
(2)当|x
1
|+|x
2
|=
2
2
时,求a的值.
(2004·宿迁)已知抛物线y=-x
2
+mx-m+2.
(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=
5
,试求m的值;
(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.
(2004·济南)已知抛物线y=-
1
2
x
2
+(6-
m
2
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.
若不论自变量x取何实数时,二次函数y=2x
2
-2kx+m的函数值总是正数,且关于x的实一元二次方程x
2
-4x+k=0有两个不相等的数根.当k为符合条件的最大整数时,m的取值范围为
m>
9
2
m>
9
2
.
二次函数y=ax
2
+bx+c的图象如图所示,给出下列说法:
①abc<0;②方程ax
2
+bx+c=0的根为x
1
=-1、x
2
=3;③当x>1时,y随x值的增大而减小;④当y>0时,-1<x<3.其中正确的说法是
D
D
.
A.①;B.①②;C.①②③;D.①②③④