试题
题目:
已知二次函数y=x
2
+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求该二次函数图象与x轴的另一个交点.
答案
解:(1)把A(2,0)、B(0,-6)代入y=x
2
+bx+c得,4+2b+c=0,c=-6,
∴b=1,c=-6,
∴这个二次函数的解析式y=x
2
+x-6;
(2)令y=0,则x
2
+x-6=0,解方程得x
1
=2,x
2
=-3,
∴二次函数图象与x轴的另一个交点为(-3,0).
解:(1)把A(2,0)、B(0,-6)代入y=x
2
+bx+c得,4+2b+c=0,c=-6,
∴b=1,c=-6,
∴这个二次函数的解析式y=x
2
+x-6;
(2)令y=0,则x
2
+x-6=0,解方程得x
1
=2,x
2
=-3,
∴二次函数图象与x轴的另一个交点为(-3,0).
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式;抛物线与x轴的交点.
(1)把A(2,0)、B(0,-6)代入y=x
2
+bx+c得到关于b与c的方程组,解方程组即可;
(2)令y=0得到x
2
+x-6=0,然后解方程即可得到二次函数图象与x轴的另一个交点.
本题考查了利用待定系数法求二次函数的解析式:设二次函数的解析式为y=ax
2
+bx+c(a≠0),然后把图象上三个点的坐标分别代入得到关于a、b、c的方程组,解方程组求出a、b、c的值,从而确定二次函数的解析式.也考查了二次函数与x轴交点坐标的求法.
计算题.
找相似题
(2005·北京)已知:关于x的方程(a+2)x
2
-2ax+a=0有两个不相等的实数根x
1
和x
2
,并且抛物线y=x
2
-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁.
(1)求实数a的取值范围;
(2)当|x
1
|+|x
2
|=
2
2
时,求a的值.
(2004·宿迁)已知抛物线y=-x
2
+mx-m+2.
(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=
5
,试求m的值;
(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.
(2004·济南)已知抛物线y=-
1
2
x
2
+(6-
m
2
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.
若不论自变量x取何实数时,二次函数y=2x
2
-2kx+m的函数值总是正数,且关于x的实一元二次方程x
2
-4x+k=0有两个不相等的数根.当k为符合条件的最大整数时,m的取值范围为
m>
9
2
m>
9
2
.
二次函数y=ax
2
+bx+c的图象如图所示,给出下列说法:
①abc<0;②方程ax
2
+bx+c=0的根为x
1
=-1、x
2
=3;③当x>1时,y随x值的增大而减小;④当y>0时,-1<x<3.其中正确的说法是
D
D
.
A.①;B.①②;C.①②③;D.①②③④