试题
题目:
如图,已知:双曲线
y=
k
x
(x>0)
经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(8,-4),求点C的坐标.
答案
解:已知A的坐标(8,-4),直角三角形OAB斜边OA的中点D,可得D(4,-2),
双曲线经过点D,即
-2=
k
4
,可得k=-8,
故双曲线方程
y=-
8
x
,
设点C(8,n),
∴
n=-
8
8
=-1
,
∴点C(8,-1)
解:已知A的坐标(8,-4),直角三角形OAB斜边OA的中点D,可得D(4,-2),
双曲线经过点D,即
-2=
k
4
,可得k=-8,
故双曲线方程
y=-
8
x
,
设点C(8,n),
∴
n=-
8
8
=-1
,
∴点C(8,-1)
考点梳理
考点
分析
点评
专题
反比例函数综合题.
因为三角形OAB是直角,已知A点的坐标,可设C(8,n),求出双曲线的方程,将C坐标代入即可.
本题为反比例函数综合题,难度不大,关键利用三角形是直角三角形设点的坐标代入双曲线方程.
计算题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )