试题
题目:
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
A.4
3
B.-4
3
C.2
3
D.-2
3
答案
B
解:∵∠ACB=30°,∠AOB=60°,
∴∠OAC=∠AOB-∠ACB=30°,
∴∠OAC=∠ACO,
∴OA=OC=4,
在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,
∴∠OAB=30°,
∴OB=
1
2
OC=2,
∴AB=
3
OB=2
3
,
∴A点坐标为(-2,2
3
),
把A(-2,2
3
)代入y=
k
x
得k=-2×2
3
=-4
3
.
故选B.
考点梳理
考点
分析
点评
反比例函数综合题.
根据三角形外角性质得∠OAC=∠AOB-∠ACB=30°,易得OA=OC=4,然后再Rt△AOB中利用含30度的直角三角形三边的关系得到OB=
1
2
OC=2,AB=
3
OB=2
3
,则可确定A点坐标为(-2,2
3
),最后把A点坐标代入反比例函数解析式y=
k
x
中即可得到k的值.
本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用含30度的直角三角形三边的关系进行几何计算.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )
(2012·东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数
y=
4
x
的图象相交于C,D两点,分
别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的结论是( )