试题
题目:
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:过点C作CF⊥x轴于点F,
∵OB·AC=160,A点的坐标为(10,0),
∴OA·CF=
1
2
OB·AC=
1
2
×160=80,菱形OABC的边长为10,
∴CF=
80
OA
=
80
10
=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF=
OC
2
-
CF
2
=
10
2
-
8
2
=6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(
10+6
2
,
8
2
),即(8,4),
∵双曲线
y=
k
x
(x>0)经过D点,
∴4=
k
8
,即k=32,
∴双曲线的解析式为:y=
32
x
(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
∴
y=
32
x
y=8
,解得
x=4
y=8
,
∴E点坐标为(4,8),故②正确;
∵CF=8,OC=10,
∴sin∠COA=
CF
OC
=
8
10
=
4
5
,故③正确;
∵A(10,0),C(6,8),
∴AC=
(10-6
)
2
+(0-8
)
2
=4
5
,
∵OB·AC=160,
∴OB=
160
AC
=
160
4
5
=8
5
,
∴AC+OB=4
5
+8
5
=12
5
,故④正确.
故选C.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
过点C作CF⊥x轴于点F,由OB·AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线
y=
k
x
(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=
CF
OC
可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB·AC=160即可求出OB的长.
本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中.
压轴题;探究型.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )
(2012·东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数
y=
4
x
的图象相交于C,D两点,分
别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的结论是( )