试题
题目:
(2002·哈尔滨)已知二次函数y=ax
2
+bx+c的图象如图,下列结论:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0.其中正确的个数是( )
A.4个
B.3个
C.2个
D.1个
答案
B
解:∵抛物线的开口方向向下,
∴a<0;
∵抛物线与y轴的交点在y轴的正半轴上,
∴c>0;
∵对称轴为x=
-
b
2a
=-1<0,
又∵a<0,
∴b<0,
故abc>0,
∵x=
-
b
2a
=-1,
∴b=2a
由图象可知:当x=1时y=0,
∴a+b+c=0;
当x=-1时y>0,
∴a-b+c>0,
∴①、②、④正确.
故选B.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
考查二次函数y=ax
2
+bx+c系数符号的确定.
压轴题.
找相似题
(2013·遵义)二次函数y=ax
2
+bx+c(a≠0)的图象如图如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b.则M,N,P中,值小于0的数有( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·烟台)如图是二次函数y=ax
2
+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y
1
),(
5
2
,y
2
)是抛物线上两点,则
y
1
>y
2
.其中说法正确的是( )
(2013·十堰)如图,二次函数y=ax
2
+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0,②b
2
>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0,其中正确结论的个数是( )