题目:
(2009·长春模拟)如图,面积为2的矩形ABOC的边OB、OC分别在x轴的负半轴和y轴的正半轴上

,顶点A在双曲线y=
的图象上,且OC=2.
(1)求k的值;
(2)将矩形ABOC以B为旋转中心,逆时针旋转90°后得到矩形BDEF,且双曲线交DE于M点,交EF于N点,求△MEN的面积.
答案
解:(1)∵矩形ABOC的面积为2,且OC=2
∴OB=AC
∵点A在第二象限
∴A(-1,2)
∵顶点A在双曲线y=
的图象上
∴将A点代入双曲线函数中,得:2=-k,即k=-2(2分);
(2)∵矩形ABOC以B为旋转中心,逆时针旋转90°后得到矩形BDEF
∴点M、E纵坐标为1,点N、E横坐标为-3
∴将Y=1代入Y=-
中,则x=-2,将x=-3代入Y=-
中,则y=
∴M(-2,1),E(-3,1),N(-3,
),(5分)
∴EM=1,EN=
(6分)
∴S=
(7分).
解:(1)∵矩形ABOC的面积为2,且OC=2
∴OB=AC
∵点A在第二象限
∴A(-1,2)
∵顶点A在双曲线y=
的图象上
∴将A点代入双曲线函数中,得:2=-k,即k=-2(2分);
(2)∵矩形ABOC以B为旋转中心,逆时针旋转90°后得到矩形BDEF
∴点M、E纵坐标为1,点N、E横坐标为-3
∴将Y=1代入Y=-
中,则x=-2,将x=-3代入Y=-
中,则y=
∴M(-2,1),E(-3,1),N(-3,
),(5分)
∴EM=1,EN=
(6分)
∴S=
(7分).