试题

题目:
青果学院(2013·巴中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(  )



答案
D
解:由二次函数y=ax2+bx+c的图象可得:抛物线开口向上,即a>0,
抛物线与y轴的交点在y轴负半轴,即c<0,
∴ac<0,选项A错误;
由函数图象可得:当x<1时,y随x的增大而减小;
当x>1时,y随x的增大而增大,选项B错误;
∵对称轴为直线x=1,∴-
b
2a
=1,即2a+b=0,选项C错误;
由图象可得抛物线与x轴的一个交点为(-1,0),又对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
则x=3是方程ax2+bx+c=0的一个根,选项D正确.
故选D.
考点梳理
二次函数图象与系数的关系;二次函数的性质.
由函数图象可得抛物线开口向上,得到a大于0,又抛物线与y轴的交点在y轴负半轴,得到c小于0,进而得到a与c异号,根据两数相乘积为负得到ac小于0,选项A错误;
由抛物线开口向上,对称轴为直线x=1,得到对称轴右边y随x的增大而增大,选项B错误;
由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,选项C错误;
由抛物线与x轴的交点为(-1,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(3,0),进而得到方程ax2+bx+c=0的有一个根为3,选项D正确.
此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,难度适中.二次函数y=ax2+bx+c=0(a≠0),a的符合由抛物线的开口方向决定,c的符合由抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置决定,抛物线的增减性由对称轴决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小.此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标.
压轴题.
找相似题