试题

题目:
青果学院(2013·平凉)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a-b<0;②abc<0;③a+b+c<0;④a-b+c>0;⑤4a+2b+c>0,
错误的个数有(  )



答案
B
青果学院解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=-
b
2a
>-1,故
b
2a
<1,∵a<0,∴b>2a,所以2a-b<0,①正确; 
②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;
③当x=1时,y=a+b+c<0,③正确;
④当x=-1时,y=a-b+c<0,④错误;
⑤当x=2时,y=4a+2b+c<0,⑤错误;
故错误的有2个.
故选:B.
考点梳理
二次函数图象与系数的关系.
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断.
此题主要考查了图象与二次函数系数之间的关系,将x=1,-1,2代入函数解析式判断y的值是解题关键.
压轴题.
找相似题