试题
题目:
如图,在平面直角坐标系中,已知点D为函数y=
18
x
(x>0)上 的一点,四边形ABCD是直角梯形(点B在坐标原点处),AD∥BC,∠B=90°,A(0,3),C(4,0),点P从A出发,以3个单位/秒的速度沿直线AD向右运动,点Q从点C同时出发,以1个单位/秒的速度沿直线CB向左运动.
(1)求点D的坐标;
(2)从运动开始,经过多少时间以点P、Q、C、D为顶点的四边形为平行四边形?
(3)当运动时间t=
2
3
秒时,在y轴上找一点M,使得△PCM是以PC为底的等腰三角形时,请求出点M的坐标.
答案
解:(1)∵点D的纵坐标为3,∴3=
18
x
,
∴x=6,
∴D(6,3)
(2)设运动时间为t秒,则AP=3t,PD=|6-3t|,CQ=t.
∵PD∥CQ,故当PD=CQ时,可得平行四边形,
∴|6-3t|=t,
则6-3t=t,或6-3t=-t.
∴t=1.5秒或3秒.
(3)当t=
2
3
s时,AP=
2
3
×3=2,P为(2,3).
设M(0,y),则MC
2
=OM
2
+OC
2
=4
2
+y
2
,PM
2
=PA
2
+AM
2
=2
2
+(3-y)
2
PC
2
=PE
2
+CE
2
=3
2
+2
2
∵△PMC是以PC为底的等腰三角形
则MC=PM,则4
2
+y
2
=2
2
+(3-y)
2
,y=-
1
2
;
∴当M的坐标为(0,-
1
2
)
解:(1)∵点D的纵坐标为3,∴3=
18
x
,
∴x=6,
∴D(6,3)
(2)设运动时间为t秒,则AP=3t,PD=|6-3t|,CQ=t.
∵PD∥CQ,故当PD=CQ时,可得平行四边形,
∴|6-3t|=t,
则6-3t=t,或6-3t=-t.
∴t=1.5秒或3秒.
(3)当t=
2
3
s时,AP=
2
3
×3=2,P为(2,3).
设M(0,y),则MC
2
=OM
2
+OC
2
=4
2
+y
2
,PM
2
=PA
2
+AM
2
=2
2
+(3-y)
2
PC
2
=PE
2
+CE
2
=3
2
+2
2
∵△PMC是以PC为底的等腰三角形
则MC=PM,则4
2
+y
2
=2
2
+(3-y)
2
,y=-
1
2
;
∴当M的坐标为(0,-
1
2
)
考点梳理
考点
分析
点评
反比例函数综合题.
(1)点D的纵坐标为3,把y=3代入反比例函数的解析式,求得x的值,则D的坐标可以得到;
(2)P、Q、C、D为顶点的四边形为平行四边形,则PD=CQ,据此即可列出方程,求得t的值;
(3)当运动时间t=
2
3
秒时,首先求得P、Q的坐标,根据△PMC是以PC为底的等腰三角形,即可列出方程,求得M的坐标.
本题是反比例函数、等腰三角形的性质、以及平行四边形的判定的综合应用,正确理解方程思想是解题的关键.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )