试题
题目:
如图,双曲线y=
k
x
经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,若△OAB的面积为5,求k的值.
答案
解:过点A作AC⊥x轴于点C,则AC∥MN,
∴△OAC∽△OMN,
∴OC:OM=AC:MN=OA:ON,
∵OA=2AN,即OA:ON=2:3,
∵设A(a,b),
∴OC=a,AC=b,
∴OM=
3
2
a,MN=
3
2
b,
∴N点坐标为(
3
2
a,
3
2
b),
设点B(
3
2
a,y),
∵点A与点B都在反比例函数y=
k
x
的图象上,
∴k=ab=
3
2
a·y,
∴y=
2
3
b,即B(
3
2
a,
2
3
b),
∵OA=2AN,△OAB的面积是5,
∴△NAB的面积是
5
2
,
∴△ONB的面积=5+
5
2
=
15
2
,
∴
1
2
NB·OM=
15
2
,
1
2
×(
3
2
b-
2
3
b)×
3
2
a=
15
2
,
∴ab=12,
∴k=12.
解:过点A作AC⊥x轴于点C,则AC∥MN,
∴△OAC∽△OMN,
∴OC:OM=AC:MN=OA:ON,
∵OA=2AN,即OA:ON=2:3,
∵设A(a,b),
∴OC=a,AC=b,
∴OM=
3
2
a,MN=
3
2
b,
∴N点坐标为(
3
2
a,
3
2
b),
设点B(
3
2
a,y),
∵点A与点B都在反比例函数y=
k
x
的图象上,
∴k=ab=
3
2
a·y,
∴y=
2
3
b,即B(
3
2
a,
2
3
b),
∵OA=2AN,△OAB的面积是5,
∴△NAB的面积是
5
2
,
∴△ONB的面积=5+
5
2
=
15
2
,
∴
1
2
NB·OM=
15
2
,
1
2
×(
3
2
b-
2
3
b)×
3
2
a=
15
2
,
∴ab=12,
∴k=12.
考点梳理
考点
分析
点评
反比例函数综合题.
过点A作AC⊥x轴于点C,则AC∥MN,故可得出△OAC∽△OMN,由相似三角形的性质可知OC:OM=AC:MN=OA:ON,再由OA=2AN可知OA:ON=2:3,设A(a,b),可用a、b表示出N点坐标,设点B(
3
2
a,y),点A与点B都在反比例函数y=
k
x
的图象上可用a、b表示出B点坐标,再由OA=2AN,△OAB的面积是5可得出△NAB的面积,△ONB的面积,故可得出ab的值,进而得出k的值.
本题考查的是反比例函数综合题,涉及到相似三角形的判定与性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特点等知识,难度适中.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )