反比例函数综合题.
(1)把x=-4,y=3分别代入y=
,求出对应的y值与x值,从而得出点E、点F的坐标;
(2)根据三角函数的定义,在Rt△PAB中与Rt△PEF中,分别求出tan∠PAB与tan∠PEF的值,然后由平行线的判定定理,得出EF与AB的位置关系;
(3)如果分别过点E、F作PF、PE的平行线,交点为P′,则四边形PEP′F是矩形.所求面积S=S
△PEF-S
△OEF=S
△P′EF-S
△OEF=S
△OME+S
矩形OMP′N+S
△ONF,根据反比例函数比例系数k的几何意义,可用含k的代数式表示S,然后根据二次函数的性质及自变量的取值范围确定S的最小值.
本题主要考查了三角函数的定义,平行线的判定,反比例函数比例系数的几何意义及二次函数最小值的求法等知识点,综合性较强,难度较大.
计算题;压轴题.