试题
题目:
(2012·长春)如图,在平面直角坐标系中,·OABC的顶点A、C的坐标分别为A(2,0)、C(-1,2),反比例函数y=
k
x
(k≠0)的图象经过点B.
(1)求k的值.
(2)将·OABC沿x轴翻折,点C落在点C′处,判断点C′是否在反比例函数y=
k
x
(k≠0)的图象上,请通过计算说明理由.
答案
解:(1)∵四边形OABC是平行四边形,
∴BC=AO,
∵A(2,0),
∴OA=2,
∴BC=2,
∵C(-1,2),
∴CD=1,
∴BD=BC-CD=2-1=1,
∴B(1,2),
∵反比例函数y=
k
x
(k≠0)的图象经过点B,
∴k=1×2=2;
(2)∵·OABC沿x轴翻折,点C落在点C′处,
∴C′点坐标是(-1,-2),
∵k=2,
∴反比例函数解析式为y=
2
x
,
把C′点坐标(-1,-2)代入函数解析式能使解析式左右相等,
故点C′在反比例函数y=
2
x
的图象上.
解:(1)∵四边形OABC是平行四边形,
∴BC=AO,
∵A(2,0),
∴OA=2,
∴BC=2,
∵C(-1,2),
∴CD=1,
∴BD=BC-CD=2-1=1,
∴B(1,2),
∵反比例函数y=
k
x
(k≠0)的图象经过点B,
∴k=1×2=2;
(2)∵·OABC沿x轴翻折,点C落在点C′处,
∴C′点坐标是(-1,-2),
∵k=2,
∴反比例函数解析式为y=
2
x
,
把C′点坐标(-1,-2)代入函数解析式能使解析式左右相等,
故点C′在反比例函数y=
2
x
的图象上.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)根据平行四边形的性质可得AO=BC,再根据A、C点坐标可以算出B点坐标,再把B点坐标代入反比例函数解析式中即可求出k的值;
(2)根据翻折方法可知C与C′点关于x轴对称,故C′点坐标是(-1,-2),把C′点坐标(-1,-2)代入解析式发现能使解析式左右相等,故点C′是否在反比例函数y=
2
x
的图象上.
此题主要考查了反比例函数点的坐标与反比例函数解析式的关系,以及平行四边形的性质,关键是熟练把握凡是反比例函数图象经过的点都能满足解析式.
压轴题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )