试题
题目:
(2013·雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
答案
解:(1)过点A作AD⊥x轴于D,
∵C的坐标为(-2,0),A的坐标为(n,6),
∴AD=6,CD=n+2,
∵tan∠ACO=2,
∴
AD
CD
=
6
n+2
=2,
解得:n=1,
故A(1,6),
∴m=1×6=6,
∴反比例函数表达式为:y=
6
x
,
又∵点A、C在直线y=kx+b上,
∴
k+b=6
-2k+b=0
,
解得:
k=2
b=4
,
∴一次函数的表达式为:y=2x+4;
(2)由
y=
6
x
y=2x+4
得:
6
x
=2x+4,
解得:x=1或x=-3,
∵A(1,6),
∴B(-3,-2);
(3)分两种情况:①当AE⊥x轴时,
即点E与点D重合,
此时E
1
(1,0);
②当EA⊥AC时,
此时△ADE∽△CDA,
则
AD
CD
=
DE
AD
,
DE=
36
3
=12,
又∵D的坐标为(1,0),
∴E
2
(13,0).
解:(1)过点A作AD⊥x轴于D,
∵C的坐标为(-2,0),A的坐标为(n,6),
∴AD=6,CD=n+2,
∵tan∠ACO=2,
∴
AD
CD
=
6
n+2
=2,
解得:n=1,
故A(1,6),
∴m=1×6=6,
∴反比例函数表达式为:y=
6
x
,
又∵点A、C在直线y=kx+b上,
∴
k+b=6
-2k+b=0
,
解得:
k=2
b=4
,
∴一次函数的表达式为:y=2x+4;
(2)由
y=
6
x
y=2x+4
得:
6
x
=2x+4,
解得:x=1或x=-3,
∵A(1,6),
∴B(-3,-2);
(3)分两种情况:①当AE⊥x轴时,
即点E与点D重合,
此时E
1
(1,0);
②当EA⊥AC时,
此时△ADE∽△CDA,
则
AD
CD
=
DE
AD
,
DE=
36
3
=12,
又∵D的坐标为(1,0),
∴E
2
(13,0).
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;
(2)求出反比例函数和一次函数的另外一个交点即可;
(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.
本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力.
综合题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )