试题

题目:
不等式x+1>
2
x
的解集为
-2<x<0或x>1
-2<x<0或x>1

答案
-2<x<0或x>1

青果学院解:设函数y1=x+1,y2=
2
x

当y1=y2时,有x+1=
2
x

解关于x的一元二次方程得x1=1,x2=-2,
即两个函数的交点是(1,2)和(-2,-1),
先画一次函数y1=x+1的图象,经过(1,2)和(-2,-1),
反比例函数y=
2
x
经过一,三象限,第一象限经过(1,2)和(2,1)等点,
第三象限经过(-1,-2)和(-2,-1)等点,如右图所示:
观察图象可知:在第一象限当x>1时,y1>y2;在第三象限,当-2<x<0时,y1>y2
故答案是-2<x<0和x>1.
考点梳理
反比例函数综合题.
先设y1=x+1,y2=
2
x
,再求出两个函数的交点,并画出每一函数的图象,通过观察图象易知y1>y2时,x的取值范围.
本题考查了一次函数、反比例函数的图象性质,以及通过图象比较两个函数在一定范围内的大小.解题的关键是求出两个函数的交点.
数形结合.
找相似题