试题

题目:
青果学院如图,点P是反比例函数y=-
2
x
的图象上一点,A、B分别是x轴y轴上的点,且PA=PB,PA⊥PB,则OA+OB=
2
2
2
2

答案
2
2

青果学院解:过点P作PD⊥y轴于点D,作PC⊥x轴于点C,
∵PA⊥PB,由辅助线可得出∠CPD=90°,
∴∠PAC=∠DPB,
在△PAC和△PBD中,
∠PDB=∠PCA
∠DPB=∠APC
PB=PA

∴△PAC≌△PBD(AAS),
∴DB=AC,PC=PD,
∴P点横纵坐标绝对值相等,AO+BO=CO+DO,
∵点P是反比例函数y=-
2
x
的图象上一点,
∴|xy|=2,
∴x2=2,
则x=-
2
,CO=DO=
2

故AO+BO=CO+DO=2
2

故答案为:2
2
考点梳理
反比例函数综合题;全等三角形的判定与性质.
过点P作PD⊥y轴于点D,作PC⊥x轴于点C,首先证出△PAC≌△PBD,进而得出DB=AC,PC=PD,再利用反比例函数的性质得出CO=DO,即可求出答案.
此题主要考查了反比例函数的综合应用以及全等三角形的判定与性质,根据已知得出PD=PC,AC=DB是解题关键.
压轴题.
找相似题