试题
题目:
如图,直线y=-
1
2
x+2与x轴y轴交于A、B两点,AC⊥AB,交双曲线y=
k
x
(x<O)于C点,且BC交x轴于M点,BM=2CM,则k=
-
7
2
-
7
2
.
答案
-
7
2
解:作CD⊥OA于D,如图,
把x=0代入y=-
1
2
x+2得y=2,把y=0代入y=-
1
2
x+2得-
1
2
x+2=0,解得x=4,
∴B点坐标为(0,2),A点坐标为(0,4),即OB=2,OA=4,
∵CD⊥OA,
∴∠CDM=∠BOM=90°,
而∠CMD=∠BMO,
∴Rt△BMO∽Rt△CMD,
∴
OB
CD
=
BM
MC
,
而BM=2CM,OB=2,
∴CD=1,
∵AC⊥AB,
∴∠BAO+∠CAD=90°,
而∠CAD+∠ACD=90°,
∴∠BAO=∠ACD,
∴Rt△BAO∽Rt△ACD,
∴
OB
AD
=
OA
CD
,即
2
AD
=
4
1
,
∴AD=
1
2
,
∴OD=OA-DA=4-
1
2
=
7
2
,
∴C点坐标为(
7
2
,-1),
把C(
7
2
,-1)代入y=
k
x
得k=-
7
2
.
故答案为-
7
2
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
作CD⊥OA于D,先确定B点坐标为(0,2),A点坐标为(0,4),得到OB=2,OA=4,易证得Rt△BMO∽Rt△CMD,则
OB
CD
=
BM
MC
,而BM=2CM,OB=2,则可计算出CD=1,然后再证明Rt△BAO∽Rt△ACD,利用相似比可计算出AD,于是可确定C点坐标,然后把C点坐标代入反比例函数解析式中即可得到k的值.
本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用相似比进行几何计算.
计算题;压轴题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )