题目:

如图,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴、y轴建立平面直角坐标系.F是BC边上的点,过F点的反比例函数y=
(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点M处,求点F的坐标.
答案

解:∵将△CEF沿EF对折后,C点恰好落在OB上的M点处,
∴∠EMF=∠C=90°,EC=EM,CF=MF,
∴∠MME+∠FMB=90°,
而EM⊥OB,
∴∠MME+∠MEM=90°,
∴∠MEM=∠FMB,
∴Rt△MEM∽Rt△BMF;
又∵EC=AC-AE=4-
,CF=BC-BF=3-
,
∴EM=4-
,MF=3-
,
∴
=
=
;
∴ED:MB=EM:MF=4:3,而ED=3,
∴MB=
,
在Rt△DBF中,MF
2=MB
2+MF
2,即(3-
)
2=(
)
2+(
)
2,
解得k=
,
∴反比例函数解析式为y=
,
把x=4代入得y=
,
∴F点的坐标为(4,
).

解:∵将△CEF沿EF对折后,C点恰好落在OB上的M点处,
∴∠EMF=∠C=90°,EC=EM,CF=MF,
∴∠MME+∠FMB=90°,
而EM⊥OB,
∴∠MME+∠MEM=90°,
∴∠MEM=∠FMB,
∴Rt△MEM∽Rt△BMF;
又∵EC=AC-AE=4-
,CF=BC-BF=3-
,
∴EM=4-
,MF=3-
,
∴
=
=
;
∴ED:MB=EM:MF=4:3,而ED=3,
∴MB=
,
在Rt△DBF中,MF
2=MB
2+MF
2,即(3-
)
2=(
)
2+(
)
2,
解得k=
,
∴反比例函数解析式为y=
,
把x=4代入得y=
,
∴F点的坐标为(4,
).