试题
题目:
如图,点M是函数
y=x+
1
x
图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA·MB=
2
2
2
2
.
答案
2
2
解:延长AM,交直线y=x于点D,设M(x,x+
1
x
)
则△AOD是等腰直角三角形,即∠ADO=45°,
∴OA=AD=x+
1
x
,AM=x,
∴MD=AD-AM=
1
x
,
∵MB⊥l,
∴MB=BD,
∴△BDM是等腰直角三角形,
∴MB
2
+BD
2
=MD
2
,
∴MB=
2
2
MD,
∴MB=
2
2
×
1
x
=
2
2x
,
∴MA·MB=x·
2
2x
=
2
2
.
故答案为:
2
2
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
延长AM,交直线y=x于点D,则△AOD是等腰直角三角形,即∠ADO=45°,由于MB⊥l,所以由勾股定理可知MB=BD=
2
MD,设M点坐标为(x,x+
1
x
),由于M在第一象限,所以MA=x,OA=AD=x+
1
x
,所以MD=AD-AM=
1
x
,进而可求出答案.
本题考查的是反比例函数,涉及到正比例函数、等腰直角三角形的判定与性质及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题.
几何图形问题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )