答案
解:(1)如图,∵在平行线四边形ABCD中,AB=CD,且AB∥CD.
∴点C的纵坐标与点D的纵坐标相等.
∵A(-2,0)、B(6,0),D(0,3),
∴AB=DC=8,
∴C(8,3).
设经过点C的双曲线方程为y=
(k≠0),则k=xy=8×3=24,
∴反比例函数的解析式是:y=
;
(2)将点B的横坐标6代入反比例函数y=
中,可得y=4.
故将平行四边形ABCD向上平移4个单位,能使点B落在双曲线上,即m=4.
解:(1)如图,∵在平行线四边形ABCD中,AB=CD,且AB∥CD.
∴点C的纵坐标与点D的纵坐标相等.
∵A(-2,0)、B(6,0),D(0,3),
∴AB=DC=8,
∴C(8,3).
设经过点C的双曲线方程为y=
(k≠0),则k=xy=8×3=24,
∴反比例函数的解析式是:y=
;
(2)将点B的横坐标6代入反比例函数y=
中,可得y=4.
故将平行四边形ABCD向上平移4个单位,能使点B落在双曲线上,即m=4.