试题
题目:
如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为(-4,3),D是AB边上的一点,将△ADO沿直线OD翻折,使点A恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是
y=-
108
25x
y=-
108
25x
.
答案
y=-
108
25x
解:过E作EF⊥CO,
∵B(-4,3),
∴AO=CB=3,CO=AB=4,
OB=
CO
2
+
CB
2
=5,
sinα=
CB
BO
=
3
5
,
∴EF=EO·sinα,
由折叠可得:EO=AO=3,
∴EF=3×
3
5
=
9
5
,
∴FO=
EO
2
-
EF
2
=
12
5
,
∴E(
-
12
5
,
9
5
),
设反比例函数解析式为y=
k
x
(k≠0),
则k=-
12
5
×
9
5
=-
108
25
,
故反比例函数解析式为;y=-
108
25x
,
故答案为:y=-
108
25x
.
考点梳理
考点
分析
点评
反比例函数综合题.
首先过E作EF⊥CO,根据B点坐标可得到AO=CB=3,CO=AB=4,再利用勾股定理算出BO的长,然后求出sinα,再根据本折叠的性质可知EO=AO=3,利用三角函数计算出EF的长,再次利用勾股定理计算出FO的长度,进而得到E点坐标,设出反比例函数关系式,利用待定系数法即可求出答案.
此题主要考查了利用待定系数法求反比例函数关系式,折叠的性质,勾股定理,三角函数的应用,解决问题的关键是利用三角函数与勾股定理求出E点坐标.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )