试题
题目:
(2012·市中区一模)如图一次函数
y=
1
2
x-2
的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数
y=
k
x
(k>0)
的图象于Q,
S
△OQC
=
3
2
,则Q点的坐标为
(2,
3
2
)
(2,
3
2
)
.
答案
(2,
3
2
)
解:∵点A是次函数
y=
1
2
x-2
的图象与x轴的交点,
∴A(4,0),
∵PC是△AOB的中位线,
∴点C是线段OA的中点,即C(2,0),
∵PC∥y轴,
∴QP⊥x轴,
∴点Q的横坐标为2,
设其纵坐标为y,则
1
2
OC·y=
3
2
,即
1
2
×2y=
3
2
,
解得:y=
3
2
,
∴Q(2,
3
2
).
故答案为:(2,
3
2
).
考点梳理
考点
分析
点评
专题
反比例函数综合题.
先根据A点在一次函数y=
1
2
x-2的图象上求出A点坐标,再由PC是△AOB的中位线可知点C是线段OA的中点,PC∥y轴,故可得出C点坐标及QP⊥x轴,再由,
S
△OQC
=
3
2
可得出Q点的纵坐标.
本题考查的是反比例函数综合题,涉及到三角形中位线定理及三角形的面积公式,先根据题意得出A点坐标是解答此题的关键.
压轴题;探究型.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )