试题
题目:
(2006·长春)如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是
平行四边形
平行四边形
.
答案
平行四边形
解:∵直线l与双曲线是关于原点的中心对称图形,
而AC,BD是四边形ABCD的对角线,
根据对称性可得:OA=OC,OB=OD,
∴四边形ABCD的对角线互相平分,
故四边形ABCD的形状一定是平行四边形.
故填空答案:平行四边形.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
由于直线l与双曲线都是关于原点的中心对称图形,根据对称性可得OA=OC,OB=OD,由此即可判定四边形ABCD一定是平行四边形.
此题综合考查了反比例函数,正比例函数等多个知识点,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
压轴题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )