试题
题目:
(2010·包头)如图,已知函数y=-x+1的图象与x轴,y轴分别交于C、B两点,与双曲线
y=
k
x
(k≠0)交于A、D两点,若BC=2AB,则k的值为
-
3
4
-
3
4
.
答案
-
3
4
解:过A作AE⊥x轴于E点,如图,
对于y=-x+1,令x=0,则y=1;y=0,则x=1,
∴B点坐标为(0,1),C点坐标为(1,0);
∵AE∥OB,
∴△COB∽△CEA,
∴OB:AE=OC:EC=CB:CA,
而BC=2AB,
∴OB:AE=OC:EC=2:3,
而OB=OC=1,
∴AE=EC=
3
2
,
∴OE=
3
2
-1=
1
2
,
∴A点坐标为(-
1
2
,
3
2
),
把A(-
1
2
,
3
2
)代入双曲线
y=
k
x
(k≠0),
∴k=-
1
2
×
3
2
=-
3
4
.
故答案为-
3
4
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
过A作AE⊥x轴于E点,易得到B点坐标为(0,1),C点坐标为(1,0);由AE∥OB,根据三角形相似的判定定理得到△COB∽△CEA,再根据相似的性质得OB:AE=OC:EC=CB:CA,然后利用BC=2AB和OB=OC=1,可分别求出AE与OE,则可得到A点坐标,然后把A点坐标代入反比例的解析式即可求出k的值.
本题考查了点在反比例函数图象上,则点的横纵坐标满足其解析式.也考查了直线与坐标轴交点的求法以及三角形相似的判定与性质.
综合题;压轴题.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )