试题

题目:
两个反比例函数y=
k
x
y=
1
x
在第一象限内的图象如图所示,点P在y=
k
x
的图象上,PC⊥x轴于点C,交y=
1
x
的图象青果学院于点A,PD⊥y轴于点D,交y=
1
x
的图象于点B,当点P在y=
k
x
的图象上运动时,以下结论:
①△ODB与△OCA的面积相等;
②四边形PAOB的面积不会发生变化;
③PA与PB始终相等;
④当点A是PC的中点时,点B一定是PD的中点.
其中一定正确的是(  )



答案
C
解:由反比例函数系数k的几何意义判断各结论:
①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为
1
2

②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;青果学院
③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB;
④连接OP,点A是PC的中点,
则△OAP和△OAC的面积相等,
∵△ODP的面积=△OCP的面积=
k
2
,△ODB与△OCA的面积相等,
∴△OBP与△OAP的面积相等,
∴△OBD和△OBP面积相等,
∴点B一定是PD的中点.
故一定正确的是①②④.
故选C.
考点梳理
反比例函数综合题.
本题考查的是反比例函数中k的几何意义,无论如何变化,只要知道过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是个恒等值即易解题.
本题考查了反比例函数=
k
x
,中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
找相似题