反比例函数综合题.
设BC的延长线交x轴于点D,连接OC,点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S
△OCD=
xy,则S
△OCB′=
xy,由AB∥x轴,得点A(x-a,2y),由题意得2y(x-a)=2,从而得出三角形ABC的面积等于
ay,即可得出答案.
本题属于反比例函数的综合题,考查了折叠的性质、反比例函数的性质以及角平分线的性质.此题难度较大,注意掌握方程思想与数形结合思想的应用.