试题

题目:
已知直线l:y=-x+b(b>0)与x轴交于点A,P是函数y=
k
x
(x>0,k>0)
图象上的一点,且PO=PA(O为坐标原点),若△POA的面积为1,则k的值为(  )



答案
A
解:在y=-x+b(b>0)令y=0,解得:x=b,
则A的坐标是(b,0).
∵PO=PA
∴P在OA的中垂线上.
∴P的横坐标是:
1
2
b.
把x=
1
2
b代入函数y=
k
x
(x>0,k>0)
得:y=
2k
b

则△POA的面积=
1
2
·b·
2k
b
=k=1.
故选A.
考点梳理
反比例函数综合题.
首先求得A的坐标,根据PO=PA(O为坐标原点),可以得到A在OA的垂直平分线上,则可以求得P的横坐标,进而代入反比例函数的解析式求得纵坐标,进而根据三角形面积公式求解.
本题主要考查了反比例函数与三角形的面积的综合应用,正确确定A,P之间横坐标的关系是解题关键.
找相似题