反比例函数综合题.
过A作AE垂直于x轴,由反比例函数k的几何意义得到三角形AOE的面积为
|k|,由OA=BA,利用三线合一得到AE为顶角平分线,且E为OB的中点,根据等底同高得到三角形AOE面积与三角形ABE面积相等,由AE与OC平行,利用两直线平行内错角相等、同位角相等,得到两对角相等,等量代换及等角对等边得到AC=AO,可得出AC=AB,即A为BC的中点,根据等底同高得到三角形AOC面积与三角形AOB面积相等,而反比例函数为中心对称图形,可得出OA=OD,即O为AD中点,利用等底同高得到三角形COD面积与三角形AOC面积相等,三角形DOB面积与三角形AOB面积相等,由四个三角形面积之和即可求出三角形BCD的面积.
此题属于反比例函数综合题,涉及的知识有:反比例函数k的几何意义,反比例函数的对称性,等腰三角形的判定与性质,以及平行线的性质,其中灵活运用等底同高的两三角形面积相等是解本题的关键.
综合题.